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Introduction

Various cohomologies and homologies are used in (commutative) algebra theory.

Example. A : ring (unitary and commutative), I : ideal of A, and M, N € Mod(A).
(Mod(A) : the category of A-modules, mod(A) : the category of finitely generated A-modules. )

Ext), (M, =) ....... Derived functor of Homy (M, ).

Tor(M,-) ........ Derived functor of M ®4 —.

Hiy(=) e, Derived functor of lim Homa(A/I", -).

Hi(f, =) i Koszul homology defined by the A-linear map f : N — A.
Hi(a, =) o, Cech cohomology defined by the sequence a = ay, ..., a, € A.
and morel!

Derived functor is obtained from a right (or left) exact functor. For example, let J® be an injective
resolution of N, then Ext' (M, N) := H (Hom(M, J*)).

Ryoya Ando (Tokyo University of Science) Weakly proregular sequence and Cech, local cohomology 2021/10/13 6/29



Introduction

Why are cohomologies used so much?
-~~~ One of the reasons for this is that ideal theoretic data can be written in a easier form for

calculation.

Definition 2.1

A:ring, M € Mod(A). a € Ais called M-regular if "x £ 0 € M, ax # 0.
Asequence a =ay,...,a, € Ais called an M-regular sequence if;

° M/(ai,...,a,)M # 0,
e | <Yi<r,ajisan M/(ay,...,ai_1)M-regular.
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Introduction

. Inwoduclon
Definition 2.2

A : Noetherian ring, M € mod(A) and I : ideal with IM # M.
depth,;(M) :==sup{r 20| Ja=ay,...,a, € I,ais an M-regular sequence.}
is called an /-depth of M.

A

Theorem 2.3 (Rees)
Under the above notation, the length of a maximal regular sequence is constant. Also;
depth, (M) = inf {i > 0| Ext'(A/I, M) # 0}.

-

This theorem shows that the depth of module is calculatable by using a cohomology!
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Cech cohomology and local cohomology

Definition 3.1

A :ring, I : ideal of A.
H;'(—) : the right derived functor of h_r)nHomA(A/I", —) is called a local cohomology.

Note that there are following isomorphisms,
i ~1; i n
H;(M) = limExt'(A/1", M)

since taking the inductive limit is an exact functor.
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Cech cohomology and local cohomology

Definition 3.2

A:ring,a=aj,...,a, €A.

{e;} : the standard basis of A".

ForeachI={ji,...,ji} (1 <ji<---<ji<r)letaj=aj ---aj,ande; =ej A---Aej,.
C*(a) : the complex defined by;

Cl(a) = )" Ager,

#I=i
d': Ci(a) = C"*(a);e; — Zel Aej.
j=1
It is called a Cech complex.
H'(a) : the cohomology of C*(a) is called a Cech cohomology.

For M € Mod(A), we define C*(a, M) := C*(a) ® M, H'(a, M) = H'(C*(a, M)).
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Cech cohomology and local cohomology

Theorem 3.3

A : Noetherianring, a = ay,...,a, € Aand I = (ay,...,a,). There are isomorphisms;

Hi(M) = H'(a, M)

forany M € Mod(A).

What happens if we remove the Noetherian assumption? Can we extend this theorem?
-~~~ This theorem was extended by Schenzel (2003) by introducing a weakly proregular
sequence.
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Theorem 4.1 (Schenzel)

A:ring,a=ai,...,ar € AandI = (ay,...,a,).
a is a weakly proregular sequence < Vi>0,"M € Mod(A), H; (M) = H'(a, M).

A weakly proregular sequence is defined using the Koszul complex.

Definition 4.2

A:ring,a=ay,...,a, € A. {e;} : the standard basis of A”.
K.(a) is the complex defined by ; i

Ki(a) = /\A’

l
di - Ki(a) - K;_1(a);ef — z:(—l)k“ajkejl Ao AEj AN Aej,.
k=1
It is called a Koszul (chain) complex.
H;(a) : the homology of K,(a) is called a Koszul homology.

\.
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Weakly proregular sequence

a" : the sequence defined by af, ..., a;.
Note that by following morphisms, Koszul complexes constitute an inverse system {K,(a")},>0;

Omn : Ki(@a™) — Ki(a"); ey = aj' ey (n < m).

—~~~»  This induces a morphism between homologies.

Definition 4.3 (Schenzel)
A:ring,a=aj,...,a, € A.
a is called a weakly proregular sequenceif 1 < Vi <r,n > 0,3m > n; @, : Hi(a™) — H;(a")
is the zero map.
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Weakly proregular sequence

We will explain that Schenzel’s theorem (Theorem 4.1) is an extension of the Noetherian case.

Definition 4.4 (Greenlees, May)

A:ring,a=aj,...,a, €A.

a is called a proregular sequence if

1<Yi<r,'n>0,m>nYa e A,aal" € (aT,...,a?il) = aa]"™" € (a?,...,al'.’_l).

The following relations hold;

Regular = Proregular = Weakly proregular.

® The first implication is easy. If a is a regular sequence, for each n > 0, let m = n.
® The second is proved by calculating a Koszul homology.
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Weakly proregular sequence

A: Noetherianring , a = ay, .. .,a, € A. a is a proregular sequence.

Proposition 4.5 J

Proof.
Let Ji, = Wl oocn @) ¢ a;."A),I,i,m = (@00 @ ) 8 T TR

v

ais a proregular sequence &= 1< i <r,"n>0,"m>n;J, c I\ .

Fix 1 < Vi < r and omit from the notation.
Fix 72, {L.;m }m=n : ascending chain of ideals ~» Fmg > n; Ym > mo, I my = Ln.m-
Let m = mg +n, then Ya € J,,, aal™ = aa?‘o € (aq"(), .. .,a?iol) C (af,...,al ).

S0 Jimy C Inmy- O
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Weakly proregular sequence

Corollary 4.6 (ICYMI : Theorem 3.3)
A : Noetherianring, a = ay,...,a, € Aand I = (ay,...,a,). There are isomorphisms;

Hi(M) = H'(a, M)

forany M € Mod(A).

Another proof of Theorem 3.3.

By above proposition, a is proregular. ~» a is weakly proregular.
Then according to Schenzel’s theorem, H: (M) = H'(a, M). o

A

vy
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Proof of Schenzel's theorem
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Proof of Schenzel's theorem

Why is a weakly proregular sequence defined by using a Koszul homology?
—~~~ A Cech cohomology can be written by using a Koszul cohomology!
K*(a) == Hom(K.(a),A). For M € Mod(A),K*(a, M) = Hom(K,.(a), M) = K*(a) M.

Ke(a): -+ — Ki(a) — Ko(a) ——> 0

Hom(—,A)
K*(@: 0 — K%a) —> K'(a) —> -
The opposition of morphism induces an inductive system {K*(a")},>0;

"K' (a") > K'(@™); (en) > af T (er)”.
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Proof of Schenzel's theorem

Proposition 5.1

A:ring,a=ai,...,ar € Aand M € Mod(A). Then;
H'(a, M) = lim H' (a", M).
a L ct

Sketch of the proof.

@' : Ki(a) — Ci(a); (er)* — (1/aj)er is a morphism of complexes.
So we get ¢} : K*(a") — C*(a") = C*(a). ltinduces ¢ : h_r)nK‘(g") — C*(a) and this is an
isomorphism.

-

o K@) T K@) — e — limK*(@")

Pm |
| ¥
k
¢n C*(a)
Then ; li_I)nHi (a", M) = Hi(li_r>nK‘ (a") ® M) = H'(C*(a") ® M) = H'(a", M).
DJ
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Proof of Schenzel's theorem

Remark 5.2

By Proposition 5.1,

i ~ 1 i( on
H'(a, M) = lim H' (a", M).

By the definition,
i = 1 i n
H;(M) = limExt'(A/1",M).

—~~~  Schenzel’s theorem holds if H (a", M) = Ext!(A/I", M), which is true when aisa
regular sequence.

However, if a is not regular, it may not work. So we will need to find an another way.
-~~~ We will show a way to use the J-functor.
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Proof of Schenzel's theorem

A:ring, I :ideal of A. Let Ty (M) == {x e M | 3n > 0;I"x =0} .
—~~~>  The functor I'; (=) connects a local cohomology and a Cech cohomology.

A:ring, a=ay,...,ar € A,I=(ay,...,a,):idealof Aand M € Mod(A).
H)(M) =T (M) = H(a, M).

v
® First isomorphism : H?(M) = 1i_n>1Hom(A/I”,M),Hom(A/I",M) ={xeM| I"'x=0}.
e H%a, M) is the kernel of (M — P]_, My,ei;x — (x/1)e;).

~~ Yy e H%a,M),1 <Vi<r,3n; > 0;a}'x =0.i.e. x € [[(M).
Similarly I'; (M) ¢ H(a,M). -~~~ H%a, M) = T';(M) as a submodule of M.

A
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Proof of Schenzel's theorem

Definition 5.4

o, B : Abelian categories.
T® = {T": o — B}iso : family of additive functors.
T* is called a 6-functor if ;
* For each exact sequence 0 — A; — Ay — A3 — 0in o/, 36" : TV (A3) — T (A4;);

0 = TO(A) = TO(A2) — T0(A3) S -+ &5 Ti(A)) = Ti(A) — Ti(A3) S .-

is exact.

® |t transfers a commutative diagram to a commutative diagram.

' is called a connecting morphism.
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Proof of Schenzel's theorem

The 6-functor is a generalisation of the derived functor.
It is also useful for proving that the family of functors are form a derived functor!

Definition 5.5

&, 9% . Abelian categories, F : of — 3 : additive functor.
F is called effaceable if YA € of, M € o/;3u : A — M : injection; F(u) = 0.

.

Proposition 5.6

da,RB : Abelian categories, o has enough injectives. T* = {T'};>¢ : 5-functor.
Vi > 0,T! is effaceable. Then;

e 79 js left-exact.

e Vi>0,T" = R'T" (up to unique isomorphism).

A
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Proof of Schenzel's theorem

Proposition 5.7

H*(a,-) is a 6-functor with H%(a, —) = HY(-).
v

Sketch of the proof.

0— M, - M, — M3 — 0 : exact sequence of Mod(A).
C*(a,M) =C*(a) ® M and Ci(a) isflat. —~~~» We obtain an exact sequence of complexes by
taking tensor products.

0 — C*(a, M) — C*(a,My) — C*(a,Mz) — 0 .

So there are connecting morphisms. O

A
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Proof of Schenzel's theorem

Proposition 5.8

A:ring, a=ay,...,a, € A.

a is a weakly proregular seqence < H* (a, —) is an effaceable §-functor.

-

Sketch of the proof.

It is enough to check each injective module J, H'(a,J) = 0 (Yi > 0).
Use Proposition 5.1. i.e. H(a, M) = li_n)lHi(Q",M).
—~~~ Calculate the Koszul (co)homology! (Note that H'(a™, J)

IR

Hom(H,(a"), J).) o

.
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Proof of Schenzel's theorem

Theorem 5.9 (ICYMI : Schenzel’s theorem)
A:ring, a=a,...,a, € Aand I = (ay,...,a,).
a is a weakly proregular sequence <= Vi>0,"M € Mod(A), H; (M) = H'(a, M).

Elementary proof of Schenzel’'s theorem. A(2021).

It is a combination of what has been said so far.
HY)(-) =T1(M) = H(a,-). (Lem. 5.3)
a is a weakly proregular sequence < H* (a, —) is an effaceable §-functor. (Prop. 5.8)

e

a is a weakly proregular sequence Yi>0,H (a,—) = H}(—) = R'T;(-). (Prop. 5.6)

O

A
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