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Throughout this talk, a ring is assumed to be a commutative ring with 1, not necessarily
Noetherian. We also let 𝑝 > 0 be a prime number.

In Noetherian ring theory, rings characterized by homological conditions are well-studied.
• Regular local rings ....................... dim 𝐴 = gl.dim 𝐴

• CM (Cohen–Macaulay) local rings dim 𝐴 = depth 𝐴
• Gorenstein local rings .................. dim 𝐴 = inj.dim 𝐴.

The study of the relationship between the ideals of rings and homological properties is a major
trend in commutative ring theory.
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• The homological conjectures are a family of problems concerning finitely generated
modules over Noetherian local rings.

• Among them, the Big Cohen–Macaulay Conjecture has long been regarded as a central
problem.

Theorem 1.1 (Big CM conjecture, André, 2018)
Let (𝐴,𝔪) be a Noetherian local ring.
There exists an 𝐴-algebra 𝐵 such that:

• 𝐵 ≠ 𝔪𝐵,
• every system of parameters for 𝐴 is a regular sequence on 𝐵.

Such a 𝐵 is called a big CM algebra of 𝐴.
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• The homological conjectures were resolved classically in the equicharacteristic case.
• However, the mixed characteristic case is more difficult.
• André resolved the big CM conjecture by making full use of perfectoid algebras.

Recall 1.2
(𝐴,𝔪, 𝑘): local ring. The characteristic char 𝐴 of a ring 𝐴 is restricted to the following four cases.

char 𝐴 char 𝑘
equichar. 0 0 0
equichar. 𝑝 𝑝 𝑝

mixed char. (0, 𝑝) 0 𝑝

mixed char. (𝑝𝑛, 𝑝), (𝑛 > 1) 𝑝𝑛 𝑝

Table: Pairings of rings and their characteristic
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• In the equicharacteristic case, the Frobenius map 𝐹 : 𝐴→ 𝐴; 𝑎 ↦→ 𝑎𝑝 is a ring
homomorphism, and the analysis of this map is a critical technique. 𝐴 is perfect if the
Frobenius map 𝐹 : 𝐴→ 𝐴 is bijective.

• Extending this concept to the mixed characteristic case leads to the notion of perfectoid.

Example 1

A standard example of a perfectoid ring constructed from 𝑝-adic integers is
�
Z𝑝 [𝑝

1
𝑝∞ ].

This ring is obtained by adjoining all 𝑝-power roots of 𝑝 to Z𝑝 and taking the 𝑝-adic completion.

• A perfectoid ring is a class of well-behaved algebras over a ring 𝐴.
• However, since such a ring is no longer Noetherian, it is necessary to develop a theory that

works even for non-Noetherian rings.
• For example, there exists a class of rings called coherent rings that generalizes Noetherian

rings.
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Kunz’s theorem, which is powerful in the equicharacteristic case, can be extended to the mixed
characteristic case by means of perfectoid techniques.

Theorem 1.3 ([Kun76])

𝐴: Noetherian ring with char 𝐴 = 𝑝 > 0.
The following conditions are equivalent.

1 𝐴 is regular.
2 𝐹 : 𝐴→ 𝐴; 𝑎 ↦→ 𝑎𝑝 is flat.

Theorem 1.4 ([BIM19,Theorem 4.7.])

𝐴: Noetherian ring with 𝑝 ∈ rad 𝐴.
The following conditions are equivalent.

1 𝐴 is regular.
2 There exists a faithfully flat ring homomorphism 𝐴→ 𝐵 with 𝐵 perfectoid.
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In the next section, we introduce weakly proregular sequences.
• Applied in [BIM19] to investigate the vanishing of Tor over 𝐴perf and 𝐴+, which is necessary

to determine regularity.
• [HM07] attempts to generalize the Cohen–Macaulay property to non-Noetherian rings. In

this context, weakly proregular sequences are used to define a generalization of systems
of parameters.
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Definition 2.1
𝐴: ring, 𝐼: ideal of 𝐴.
𝐻𝑖

𝐼 (−): the right derived functor of lim−−→Hom𝐴(𝐴/𝐼𝑛,−) is called local cohomology.

Note that there are the following isomorphisms,

𝐻𝑖
𝐼 (𝑀) � lim−−→Ext𝑖 (𝐴/𝐼𝑛, 𝑀)

since taking the inductive limit is an exact functor.
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Definition 2.2
𝐴: ring, 𝑎 = 𝑎1, . . . , 𝑎𝑟 ∈ 𝐴.
{𝑒𝑖}: the standard basis of 𝐴𝑟 .
For each 𝐼 = { 𝑗1, . . . , 𝑗𝑖} (1 ≤ 𝑗1 < · · · < 𝑗𝑖 ≤ 𝑟), let 𝑎𝐼 = 𝑎 𝑗1 · · · 𝑎 𝑗𝑖 and 𝑒𝐼 = 𝑒 𝑗1 ∧ · · · ∧ 𝑒 𝑗𝑖 .
𝐶•(𝑎): the complex defined by:

𝐶𝑖 (𝑎) :=
∑
#𝐼=𝑖

𝐴𝑎𝐼 𝑒𝐼 ,

𝑑𝑖 : 𝐶𝑖 (𝑎) → 𝐶𝑖+1(𝑎); 𝑒𝐼 ↦→
𝑟∑
𝑗=1

𝑒𝐼 ∧ 𝑒 𝑗 .

It is called the Čech complex.
𝐻̌𝑖 (𝑎): the cohomology of 𝐶•(𝑎) is called Čech cohomology.

For 𝑀 ∈ Mod(𝐴), we define 𝐶•(𝑎, 𝑀) := 𝐶•(𝑎) ⊗ 𝑀, 𝐻̌𝑖 (𝑎, 𝑀) := 𝐻𝑖 (𝐶•(𝑎, 𝑀)).
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Theorem 2.3

𝐴: Noetherian ring, 𝑎 = 𝑎1, . . . , 𝑎𝑟 ∈ 𝐴 and 𝐼 = (𝑎1, . . . , 𝑎𝑟 ). There are isomorphisms

𝐻𝑖
𝐼 (𝑀) � 𝐻̌𝑖 (𝑎, 𝑀)

for any 𝑀 ∈ Mod(𝐴).

What happens if we remove the Noetherian assumption?

Schenzel [Sch03] extended the theorem by introducing a weakly proregular
sequence.
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A weakly proregular sequence is defined using Koszul homology.

Definition 2.4 (Schenzel)
𝐴: ring, 𝑎 = 𝑎1, . . . , 𝑎𝑟 ∈ 𝐴.
𝑎 is called a weakly proregular sequence if
1 ≤ ∀𝑖 ≤ 𝑟, ∀𝑛 ≥ 0, ∃𝑚 ≥ 𝑛; 𝜑𝑚𝑛 : 𝐻𝑖 (𝑎𝑚) → 𝐻𝑖 (𝑎𝑛) is the zero map.

Theorem 2.5 (Schenzel)

𝐴: ring, 𝑎 = 𝑎1, . . . , 𝑎𝑟 ∈ 𝐴 and 𝐼 = (𝑎1, . . . , 𝑎𝑟 ).
𝑎 is a weakly proregular sequence ⇐⇒ ∀𝑖 ≥ 0, ∀𝑀 ∈ Mod(𝐴), 𝐻𝑖

𝐼 (𝑀) � 𝐻̌𝑖 (𝑎, 𝑀).
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We will explain that Schenzel’s theorem is an extension of the Noetherian case.

Proposition 2.6
𝐴: Noetherian ring, 𝑎 = 𝑎1, . . . , 𝑎𝑟 ∈ 𝐴. 𝑎 is a weakly proregular sequence.

Corollary 2.7
𝐴: Noetherian ring, 𝑎 = 𝑎1, . . . , 𝑎𝑟 ∈ 𝐴 and 𝐼 = (𝑎1, . . . , 𝑎𝑟 ).
There are functorial isomorphisms

𝐻𝑖
𝐼 (𝑀) � 𝐻̌𝑖 (𝑎, 𝑀)

for any 𝑀 ∈ Mod(𝐴) and 𝑖 ≥ 0.
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• Schenzel proved his theorem (Theorem 2.5) using derived category theory.
• In [And22], we gave a simpler proof using Abelian category theory, without relying on

derived category theory.
This result ensures that set-theoretic subtleties, such as Grothendieck universes,

can be disregarded when computing local cohomology groups using Schenzel’s theorem.
★ The key is establishing the following proposition within Abelian category theory.
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Proposition 2.8 (A.)
𝐴: ring, 𝑎 = 𝑎1, . . . , 𝑎𝑟 ∈ 𝐴.

𝑎 is a weakly proregular seqence ⇐⇒ For 𝑖 > 0, 𝐻̌𝑖 (𝑎,−) is an effaceable functor.

This proposition can be proved using only Abelian category theory.

• This proposition can be proven by appropriately selecting injective modules for each 𝑖 and
computing the Koszul homology.

• By this proposition and Grothendieck’s theorem, 𝐻̌•(𝑎,−) is a universal 𝛿-functor.
• Since 𝐻0

𝐼 (−) = 𝐻̌0(𝑎,−) holds by definition, the uniqueness of universal 𝛿-functors implies
that 𝐻𝑖

𝐼 (−) = 𝑅𝑖 (𝐻0
𝐼 (−)) = 𝐻̌𝑖 (𝑎,−) for all 𝑖 > 0.
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Recently, weakly proregular sequences have been applied to non-Noetherian commutative ring
theory.

• In [BIM19], they are used to characterize regularity.

Theorem 2.9 ([BIM19, Theorem 4.13])

Let (𝐴,𝔪, 𝑘) be an excellent local domain. Then 𝐴 is regular if any of the following conditions
hold:

1 𝐴 has positive characteristic and Tor𝐴𝑖 (𝐴perf , 𝑘) = 0 for some 𝑖 ≥ 1.
2 𝐴 has positive characteristic and Tor𝐴𝑖 (𝐴+, 𝑘) = 0 for some 𝑖 ≥ 1.
3 𝐴 has mixed characteristic, dim 𝐴 ≤ 3, and Tor𝐴𝑖 (𝐴+, 𝑘) = 0 for some 𝑖 ≥ 1.

Let 𝑎 be a system of parameters of 𝐴.
• If 𝐴 has positive characteristic, then 𝑎 is weakly proregular on 𝐴perf and 𝐴+.
• If 𝐴 has mixed characteristic and dim 𝐴 ≤ 3, then 𝑎 is weakly proregular on 𝐴+.
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• In Noetherian ring theory, Cohen–Macaulay rings have been actively studied as a
particularly well-behaved class of rings.

• For a Noetherian local ring 𝐴, the following conditions are equivalent.
A ring satisfying these conditions is called a Cohen–Macaulay ring.

1 dim 𝐴 = depth 𝐴, where depth 𝐴 is the maximal length of a regular sequence contained in
the maximal ideal of 𝐴.

2 Every system of parameters is a regular sequence.
3 For every (proper) ideal 𝐼, ht 𝐼 = grade 𝐼.
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• A naive generalization of these concepts does not work well. For example, consider a
valuation ring.

• For any valuation ring 𝑉 (that is not a field), depth𝑉 = 1.
• For a non-Noetherian valuation ring 𝑉 , dim𝑉 ≥ 2.

• However, every valuation ring is a coherent regular ring. This notion is a generalization of
regular rings, and implies the Cohen–Macaulay property in the Noetherian setting. Thus,
we expect valuation rings to be Cohen–Macaulay.

• Therefore, it is not natural to generalize the Cohen–Macaulay property to non-Noetherian
rings based on the condition dim 𝐴 = depth 𝐴.
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Therefore, we seek a generalization to non-Noetherian rings satisfying the following conditions:
1 The definition agrees in the Noetherian case.
2 Regular coherent rings are Cohen–Macaulay.
3 𝐴 is Cohen–Macaulay iff 𝐴[𝑋] is Cohen–Macaulay.
4 𝐴 is Cohen–Macaulay iff 𝐴𝑃 is Cohen–Macaulay for all 𝑃 ∈ Spec 𝐴.

In [HM07], a definition satisfying conditions 1 and 2, as well as the “if” parts of 3 and 4, was
proposed by generalizing systems of parameters using weakly proregular sequences. (The
“only if” parts remain unknown.)
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Definition 3.1 ([HM07,Definition 3.1, 4.1])
Let 𝐴 be a ring and 𝑀 an 𝐴-module. A finite sequence 𝑎 = 𝑎1, . . . , 𝑎𝑟 ∈ 𝐴 is called a
parameter sequence if the following conditions hold:

1 𝑎 is weakly proregular;
2 𝑎𝐴 ≠ 𝐴;
3 𝐻̌𝑟 (𝑎, 𝐴)𝑃 ≠ 0 for all prime ideals 𝑃 containing 𝑎.

The sequence 𝑎 is called a strong parameter sequence if 𝑎1, . . . , 𝑎𝑖 is a parameter sequence
for 𝑖 = 1, . . . , 𝑟. A ring 𝐴 is called Cohen–Macaulay if every strong parameter sequence is a
regular sequence.

• If 𝐴 is Noetherian, the notions of a strong parameter sequence and a system of parameters
coincide.

• In particular, this definition is a generalization of the definition for Noetherian rings.
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• [HM07] proves that several classes of rings are indeed Cohen–Macaulay.For example: 𝐴+,
where 𝐴 is an excellent Noetherian domain of characteristic 𝑝 > 0.

• Their proofs utilize polynomial grade, an extension of classical grade introduced by
Hochster [Hoc74].

• We will present some propositions related to this concept, as well as counterexamples to
certain claims made in [HM07].
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Definition 4.1
Let 𝐴 be a ring, and 𝑀 an 𝐴-module. Let 𝑎 = 𝑎1, . . . , 𝑎𝑟 ∈ 𝐴. The sequence 𝑎 is called a weak
𝑀-sequence if 𝑎𝑖 is a non-zerodivisor on 𝑀/(𝑎1, . . . , 𝑎𝑖−1)𝑀 for each 𝑖.

• If 𝑀/𝑎𝑀 ≠ 0, a weak 𝑀-sequence is simply a regular sequence.
• We follow the terminology of Bruns and Herzog (1997).
• [Hoc74] refers to this as a “possibly improper regular sequence on 𝑀.”
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Let grade𝐼 (𝑀) denote the maximal length of a weak 𝑀-sequence contained in an ideal 𝐼.

Lemma 4.2
Let 𝐴 be a Noetherian ring and 𝑀 a finitely generated 𝐴-module.

grade𝐼 (𝑀) > 0 ⇐⇒ (0 :𝑀 𝐼) ≔ {𝑥 ∈ 𝑀 | 𝐼𝑥 = 0} = 0

• However, without the Noetherian assumption, it is possible that grade𝐼 (𝑀) = 0 even if
(0 :𝑀 𝐼) = 0.

• That is, for every 𝑎 ∈ 𝐼, there exists a non-zero 𝑥 ∈ 𝑀 such that 𝑎𝑥 = 0, yet for every
non-zero 𝑥 ∈ 𝑀, there exists 𝑎 ∈ 𝐼 such that 𝑎𝑥 ≠ 0.

• Such examples can be constructed using the trivial extension technique due to Nagata.

Example 2 ([Vas71])

Let 𝑘 be a field, 𝐴 = 𝑘 [[𝑥, 𝑦]], 𝔪 = (𝑥, 𝑦), and 𝑀 =
⊕

𝑃∈Spec 𝐴,ht 𝑃=1 𝐴/𝑃. Then, in the trivial
extension 𝐴 ∗ 𝑀, we have (0 :𝐴∗𝑀 𝔪 ∗ 𝑀) = 0, but grade𝔪∗𝑀 (𝐴 ∗ 𝑀) = 0.
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In fact, this property can be recovered by extending the ring to a polynomial ring.

Lemma 4.3 ([Nor76, Chap. 5, Thm. 7])
Let 𝐴 be a ring, 𝐼 = (𝑎1, . . . , 𝑎𝑟 ), and 𝑀 an 𝐴-module. grade𝐼 𝐴[𝑋] (𝑀 ⊗𝐴 𝐴[𝑋]) > 0 if and only
if (0 :𝑀 𝐼) ≔ {𝑥 ∈ 𝑀 | 𝐼𝑥 = 0} = 0.

This motivates the following definition.

Definition 4.4 ([Nor76, Chap. 5.5])

p-grade𝐼 𝑀 ≔ lim
𝑛→∞

grade𝐼 𝐴[𝑋1,...,𝑋𝑛 ] (𝑀 [𝑋1, . . . , 𝑋𝑛])

This is called the polynomial grade of 𝑀 with respect to 𝐼.

In general, the following inequality holds:

p-grade𝐼 𝑀 ≤ sup
{
grade𝐼𝐵 (𝑀 ⊗𝐴 𝐵)

�� 𝐵 : faithfully flat 𝐴-algebra
}
.

We want to show that equality holds. Since this fact is stated without proof in [HM07], we first
provide a complete proof.
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Definition 4.5 ([Hoc74])

The pair (𝐼, 𝑀) is called admissible if, for any faithfully flat 𝐴-algebra 𝐵, every weak
𝑀 ⊗ 𝐵-sequence contained in 𝐼𝐵 is an 𝑀 ⊗ 𝐵-regular sequence.

• If 𝐼𝑀 ≠ 𝑀, then (𝐼, 𝑀) is admissible.
• Moreover, if 𝑀 is finitely generated, then 𝐼𝑀 ≠ 𝑀 is equivalent to (𝐼, 𝑀) being admissible.

Proposition 4.6 ([Hoc74, Sect. 1, Prop. 2])

Let 𝐴 be a ring, 𝐼 an ideal, 𝑀 an 𝐴-module, and 𝐵 a faithfully flat 𝐴-algebra. Assume that
(𝐼, 𝑀) is admissible. Then there exists 𝑛 ≥ 0 such that

grade𝐼𝐵 (𝑀 ⊗𝐴 𝐵) ≤ grade𝐼 𝐴[𝑋1,...,𝑋𝑛 ] (𝑀 [𝑋1, . . . , 𝑋𝑛]).

Thus, we see that the equality lim grade(𝑀 [𝑋1, . . . , 𝑋𝑛]) = sup{grade(𝑀 ⊗ 𝐵)} holds when
(𝐼, 𝑀) is admissible.
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Proposition 4.7
Let 𝑀 be finitely generated, and assume 𝐼𝑀 = 𝑀. Then grade𝐼 𝑀 = ∞. In particular,
lim𝑛→∞ grade𝐼 𝐴[𝑋1,...,𝑋𝑛 ] (𝑀 [𝑋1, . . . , 𝑋𝑛]) = ∞, so the desired equality holds.

We constructed the following important example for the case where 𝐼𝑀 = 𝑀 but 𝑀 is not
finitely generated.

Example 3

Let 𝐴 = Z, 𝐼 = 2Z, and 𝑀 = {𝑎/2𝑛 + Z | 𝑎 ∈ Z, 𝑛 ≥ 0} ⊂ Q/Z. Then 𝐼𝑀 = 𝑀, yet no element of
𝐼 is 𝑀-regular. That is, grade𝐼 𝑀 = 0. In this case, since 𝐼 is principal, grade𝐼𝐵 (𝑀 ⊗ 𝐵) = 0 for
any faithfully flat 𝐴-algebra 𝐵 (consequently, the equality holds with both sides being 0).
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In fact, when (𝐼, 𝑀) is not admissible, the following holds:

Lemma 4.8
Let 𝐴 be a ring, 𝐼 an ideal, and 𝑀 an 𝐴-module. If (𝐼, 𝑀) is not admissible, then

sup
{
grade𝐼𝐵 (𝑀 ⊗𝐴 𝐵)

�� 𝐵 : faithfully flat 𝐴-algebra
}
= ∞.

Therefore, it suffices to show that if (𝐼, 𝑀) is not admissible, then
lim grade(𝑀 [𝑋1, . . . , 𝑋𝑛]) = ∞.
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Proposition 4.9

Suppose that (𝐼, 𝑀) is not admissible. Then lim𝑛→∞ grade𝐼 𝐴[𝑋1,...,𝑋𝑛 ] (𝑀 [𝑋1, . . . , 𝑋𝑛]) = ∞.

Proof.
By [Hoc74,Sect. 1, Prop. 3], there exists a sequence 𝑎 = 𝑎1, . . . , 𝑎𝑟 ⊂ 𝐼 such that 𝐻𝑖 (𝑎, 𝑀) = 0
for all 𝑖. Consider the Koszul complex 𝐾•(𝑎, 𝑀), where the boundary map is given by
𝑑𝑟 : 𝑀 → 𝑀𝑟 ; 𝑥 ↦→ (𝑎1𝑥,−𝑎2𝑥, . . . ,±𝑎𝑟𝑥). Since all Koszul homology groups vanish, we have
𝐻𝑟 (𝑎, 𝑀) = ker 𝑑𝑟 = {𝑥 ∈ 𝑀 | 𝑎𝑖𝑥 = 0 for all 𝑖} = 0. Therefore, 𝑢1 ≔

∑𝑟
𝑗=1 𝑎 𝑗𝑋

𝑗
1 is a regular

element on 𝑀 [𝑋1]. For each 𝑖, we have 𝐻𝐴[𝑋1 ]
𝑖 (𝑎, 𝑀 [𝑋1]) = 𝐻𝐴

𝑖 (𝑎, 𝑀) ⊗ 𝐴[𝑋1] = 0.
Considering the long exact sequence of Koszul homology induced by the short exact sequence

0 𝑀 [𝑋1] 𝑀 [𝑋1] 𝑀 [𝑋1]/𝑢1𝑀 [𝑋1] 0𝑢1 ·

we obtain 𝐻𝐴[𝑋1 ]
𝑖 (𝑎, 𝑀 [𝑋1]/𝑢1𝑀 [𝑋1]) = 0. Similarly, let 𝑢2 ≔

∑𝑟
𝑗=1 𝑎 𝑗𝑋

𝑗
2 . This is a regular

element on 𝑀 [𝑋1]/𝑢1𝑀 [𝑋1], and we have 𝐻𝐴[𝑋1,𝑋2 ]
𝑖 (𝑎, 𝑀 [𝑋1, 𝑋2]/(𝑢1, 𝑢2)𝑀 [𝑋1, 𝑋2]) = 0.

Repeating this process shows that lim grade(𝑀 [𝑋1, . . . , 𝑋𝑛]) = ∞. □
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Consequently, we can prove the desired equality.

Theorem 4.10
Let 𝐴 be a ring, 𝐼 an ideal of 𝐴, and 𝑀 an 𝐴-module. Then

lim
𝑛→∞

grade𝐼 𝐴[𝑋1,...,𝑋𝑛 ] 𝑀 [𝑋1, . . . , 𝑋𝑛] = sup
{
grade𝐼𝐵 (𝑀 ⊗𝐴 𝐵)

�� 𝐵 : faithfully flat 𝐴-algebra
}
.

Proof.
If (𝐼, 𝑀) is admissible, the equality holds by Proposition 4.6. If (𝐼, 𝑀) is not admissible, the
equality holds by Proposition 4.9. □
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Finally, I would like to mention a counterexample to a claim made in [HM07].

Proposition 4.11 ([HM07, Prop. 2.7])
Let 𝐴 be a ring, 𝑎 a finite sequence of elements from 𝐴 of length ℓ = ℓ(𝑎), 𝐼 = 𝑎𝐴, and 𝑀 an
𝐴-module. The following integers (including the possibility of ∞) are equal:
(1) p-grade𝐼 (𝑀);
(2) sup

{
𝑘 ≥ 0

�� 𝐻ℓ−𝑖 (𝑎, 𝑀) = 0 for all 𝑖 < 𝑘
}
;

(3) sup
{
𝑘 ≥ 0

�� 𝐻̌𝑖
𝐼 (𝑀) = 0 for all 𝑖 < 𝑘

}
.

(Note: The following statement is incorrect.) Moreover, p-grade𝐼 (𝑀) < ∞ if and only if 𝐼𝑀 ≠ 𝑀.

In particular, when 𝐼 is finitely generated, this implies that 𝐼𝑀 = 𝑀 if and only if
p-grade𝐼 (𝑀) = ∞. However, this is incorrect. Example 3 serves as a counterexample. In this
example, we have p-grade𝐼 (𝑀) = 0. Computing the Koszul and Čech cohomologies shows that
the values in (2) and (3) are also 0.
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