
STUDIES OF HOMOLOGICAL ALGEBRA IN NON-NOETHERIAN CASES

RYOYA ANDO

Abstract. In this paper, we study homological algebra in the category of modules over (not
necessarily Noetherian) rings. Section 2 of this paper is mainly based on the author’s paper
[And21]. In it, we give a simple proof of Schenzel’s theorem [Sch03] (Theorem 2.2). This
theorem is used in the search for a class of good rings with homological characterisation among
non-Noetherian rings.

In section 3, we discuss the class of rings called perfect and consider a generalisation of the
minimal free resolution on Noetherian local rings. We also give a simple proof of the sufficient
condition part of the theorem by [Cha60] (Theorem 3.2).

1. Preliminaries

Throughout this paper, all rings are commutative with the identity element. In this section,
we will discuss the basics of commutative algebra theory. The proofs are omitted if they are
given in standard textbooks, for example [AM69], [Mat86] and [BH97].

For a ring A, we denote by ModA the category of A-modules and by modA the category of
finitely generated A-modules.

1.1. Regular sequences and Cohen–Macaulay rings.
Let A be a ring and M ∈ ModA. a ∈ A is called M-regular if the map a· :M →M ;x 7→ ax

is injective. When M = A, it is simply called regular. a = a1, . . . , ar ∈ A is called a M-regular
sequence if for each 1 ≤ i ≤ r, ai is M/(a1, . . . , ai−1)M -regular and M/(a1, . . . , ar)M 6= 0.

Note that when A is Noetherian and M ∈ modA, if a = a1, . . . , ar ∈ radA and a is M -regular
then any permutation of a is also regular.

Proposition 1.1. Let A be a Noetherian ring and M ∈ modA. For an ideal I with IM 6=M ,
lengths of maximal regular sequences contained in I are constant.

[Mat86] and [BH97] use homological algebra to prove this fact, but it is possible to show this
without using it. Here we give an another proof without using homological algebra.

Proof. First, we notice that there is a P ∈ AssM with I ⊂ P if and only if all elements of I are
zero divisors of M , by using the prime avoidance.

Let n be the minimal length among all maximal M -regular sequences contained in I. We use
induction on n. This proposition is trivial when n = 0.

Consider the case of n = 1. Let a ∈ I be an M -regular element which is maximal as a regular
sequence. For each b ∈ I, we will show that every element of I is a zero divisor of M/bM . There
is a P ∈ AssM/aM with I ⊂ P since a is maximal. So there is an x ∈M such that x 6∈ aM and
Ix ⊂ aM . Then there is a y ∈ M with bx = ay. If y ∈ bM then x ∈ aM since b is M -regular,
which is a contradiction. Therefore y 6∈ bM . Now Ix ⊂ aM , then Iay = Ibx ⊂ abM . So
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Iy ⊂ bM since a is M -regular. Thus all maximal M -regular sequences contained in I have the
same length.

If n > 1, let a1, . . . , an ∈ I be a maximal M -regular sequence, b1, . . . , bn ∈ I a M -regular
sequence. We denote by Ii := (a1, . . . , ai), Ji := (b1, . . . , bi). The following set;

P :=
⋃

0≤i≤n−1

(AssM/IiM ∪AssM/JiM)

is finite and each P ∈ P satisfies I 6⊂ P by the above notice. Thus there is a c ∈ I such that
for all 1 ≤ i ≤ n − 1, c is M/IiM and M/JiM -regular by using the prime avoidance. Now,
a2, . . . , an is a maximal M/a1M -regular sequence whose length is n − 1. By the hypothesis
of induction, a2, . . . , an−1, c is a maximal M/a1M -regular sequence. So M/cM has a maximal
sequence whose length is n−1. Also b1, . . . , bn−1 is a M/cM -regular sequence since b1, . . . , bn−1, c
is a M -regular sequence. Thus b1, . . . , bn−1, c is maximal by the hypothesis of induction. Now
c is a maximal M/Jn−1M -regular sequence hence so is bn. Therefore b1, . . . , bn is maximal. �

So we denote by depthIM the length of maximal regular sequences contained in I. For a
Noetherian local ring (A,m), depthmM is simply written as depthM . Note that depthM ≤
dimM if (A,m) is Noetherian local and M ∈ modA.

Definition 1.2. Let A be a Noetherian ring. M ∈ modA is said to be Cohen–Macaulay if for
each P ∈ SpecA, depthMP = dimMP . A is called Cohen–Macaulay if A is Cohen–Macaulay
as an A-module.

One of the reasons why Cohen–Macaulay modules have been well studied is that, their di-
mensions are given by homological data by below Rees’s theorem.

Theorem 1.3 (Rees). Let A be a Noetherian ring, M ∈ modA and I ideal with IM 6= M .
Then;

depthIM = inf
{
i ≥ 0

∣∣ Exti(A/I,M) 6= 0
}
.

Proof. [Mat86, Theorem 16.7], [BH97, Theorem 1.2.5]. �

The presice definition of the Ext functor will be reviewd in Definition 1.10. In order to define
Gorenstein rings, in the following subsections, we will outline some basic knowledges about
homological theory of commutative rings.

1.2. δ-functors.
We used the Ext functor above, which is one example of what is called a δ-functor. It is

introduced by [Gro57] and mentioned in [Har77] without the proof. The theory of δ-functors
is very powerful to show that some family of functors coincides with some derived functors.
Some textbooks, e.g. [Mat86, §18, lemma 2] and [BH97, Theorem 3.5.6], give proofs by using
δ-functor implicitly. We will summarise it here.

Let A be a category. A is called an Abelian category if the following conditions are
satisfied.

(1) A has the zero object.
(2) For each A,B ∈ A , HomA (A,B) has a natural Abelian group structure.
(3) For each A,B ∈ A , there is the product A×B.
(4) For each morphism f , there is the kernel and the cokernel.
(5) For each morphism f , the canonical morphism from Coim f to Im f is an isomorphism.
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Homological Algebra theory is developed on Abelian categories. See a textbook such as
[Nor60] for basic information on the chain complex and the definition of homology, cohomology.

An Abelian category A is said to have enough injectives if for any A ∈ A there is
an injective object I ∈ A and an injection ε : A → I. Similarly, A is said to have enough
projectives when for eachA ∈ A there is a projective object P ∈ A and a surjection ε : P → A.

Let A be a ring. ModA is a typical example of an Abelian category. This has enough
projectives (by taking free modules) and we can show that it also has enough injectives (by
using the Pontrjagin dual).

Definition 1.4. Let A ,B be Abelian categories. Suppose A has enough injectives. Let
F : A → B be an additive left exact functor. I• denotes an injective resolution of A ∈ A . The
functor;

RiF : A → B;A 7→ H i(F (I•))

is called a right derived functor of F .

Note that derived functors are independent up to natural transformations of the choice of an
injective resolution. The following is a characteristic property of the derived functor.

Proposition 1.5. Let A ,B be Abelian categories, and suppose A has enough injectives. Let
F : A → B be an additive left exact functor. Then

(1) R0F ∼= F (as functors).
(2) For any exact sequence in A ;

0 A1 A2 A3 0
f g

and for each i ≥ 0, there is a connecting morphism δi : RiF (A3)→ Ri+1F (A1) such
that;

0 F (A1) F (A2) F (A3) · · ·

RiF (A1) RiF (A2) RiF (A3) · · ·

F (f) F (g) δ0

δi−1 RiF (f) RiF (g) δi

is an exact sequence in B.
(3) For given a commutative diagram of the form (where the rows are exact) in A ;

0 A1 A2 A3 0

0 B1 B2 B3 0

α

f

β

g

γ

f ′ g′

and for any i ≥ 0, the following diagram;

RiF (A3) Ri+1F (A1)

RiF (B3) Ri+1F (B1)

RiF (γ) Ri+1F (α)

is commutative in B.
(4) For each injective object I ∈ A and for any i > 0, RiF (I) = 0.

Proof. See [CE56, Chap. V, §4]. �

The δ-functor can be thought of as an extract of the above property.
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Definition 1.6. Let A ,B be Abelian categories. A family of additive functors T • := {T i} is
called a δ-functor if the following conditions hold;

(1) For any exact sequence in A ;

0 A1 A2 A3 0
f g

and for each i ≥ 0, there are connecting morphisms δi : T i(A3) → T i+1(A1) such
that;

0 T 0(A1) T 0(A2) T 0(A3) · · ·

T i(A1) T i(A2) T i(A3) · · ·

T 0(f) T 0(g) δ0

δi−1 T i(f) T i(g) δi

is an exact sequence in B.
(2) Given a commutative diagram in A of the form (where the rows are exact);

0 A1 A2 A3 0

0 B1 B2 B3 0

α

f

β

g

γ

f ′ g′

and for any i ≥ 0 the following diagram;

T i(A3) T i+1(A1)

T i(B3) T i+1(B1)

T i(γ) T i+1(α)

is commutative in B.

We define that two δ-functors are isomorphic in the following way. Let T •, U• be δ-functors.
A family of natural transformations θ• = {θi : T i ⇒ U i} is called a morphism of δ-functors
if for each exact sequence ;

0 A1 A2 A3 0

in A , the following diagram;

T i(A3) T i+1(A1)

U i(A3) U i+1(A1)

θiA3

δiT

θi+1
A1

δiU

is commutative. An isomorphism is a morphism which has a two-sided inverse.

Definition 1.7. Let A ,B be Abelian categories. The δ-functor T • is called universal if for
each δ-functor U• and a natural transformation θ : T 0 ⇒ U0, there is a unique morphism of
δ-functors θ• : T • → U• such that θ0 = θ.

By the definition, two universal δ-functors such that T 0 = U0 are isomorphic up to the unique
isomorphism. So for each additive functor F : A → B, if a universal δ-functor T • with T 0 = F
exists, it is unique up to unique isomorphism. A universal δ-functor T • with this property is
called a right satellite functor of F .
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The following property gives a sufficient condition for a δ-functor to be universal, which shows
that the derived functor is also universal if A has enough injectives.

Definition-Proposition 1.8. Let A ,B be Abelian categories, F an additive functor. F is
said to be effaceable if for each A ∈ A , there is an M ∈ A and an injection (monomorphism)
u : A → M such that F (u) = 0. Under these terminologies, a δ-functor T • is universal if for
each i > 0, T i is effaceable.

Proof. Let U• be a δ-functor and θ : T 0 ⇒ U0 a natural transformation. We show that there
exists uniquely a morphism of δ-functors θ• : T • → U• such that θ0 = θ. We construct it
inductively. For any A ∈ A , there is an injection u : A → M such that T 1(u) = 0 since T 1

is effaceable. Let C be the cokernel of u. We consider the long exact sequences induced by
0 A M C 0u π . So we get the following commutative diagram.

T 0(M) T 0(C) T 1(A) 0

U0(M) U0(C) U1(A)

θM

T 0(π)

θC

δ0T T 1(u)=0

U0(π) δ0U

Now θ1A,u := δ0U ◦ θC ◦ (δ0T )−1 : T 1(A) → U1(A) is well-defined since the rows are exact.
We show θ1A,u is independent of the choice of u. Let u′ : A → M ′ be an injection such that
T 1(u′) = 0. M tAM ′ denote the cofibre product of M and M ′ on A. Then we get an injection
u′′ : A → M tA M ′ such that T 1(u′′) = 0. Let C ′′ be the cokernel of u′′. Then the following
diagram;

T 0(C) T 1(A) 0

T 0(C ′′) T 1(A) 0

U0(C) U1(A)

U0(C ′′) U1(A)

θC′′ θ1A,u

θC′′ θ1
A,u′′

is commutative. So we have θ1A,u = θ1A,u′′ , similarly we obtain θ1A,u′ = θ1A,u′′ , then we get
θ1A,u = θ1A,u′ . So θ1A is independent of the choice of u.

Secondly, we show that for each f ∈ HomA (A,B) the following diagram;

T 1(A) T 1(B)

U1(A) U1(B)

θ1A

T 1(f)

θ1B

U1(f)
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is commutative to prove θ1 is a natural transformation. For any injections u : A → M and
v : B → N with T 1(u) = T 1(v) = 0, we take the cofibre product;

A M

N M tA N

v◦f

u

u′

then u′ is injective. So we have an injection u′ ◦ v : B →M tAN with T 1(u′ ◦ v) = 0. Then we
replace N by M tA N and get the following commutative diagram with exact rows;

0 A M C 0

0 B N C ′ 0.

f

So θ1 is a natural transformation since the following diagram;

T 0(C) T 1(A) 0

T 0(C ′) T 1(B) 0

U0(C) U1(A)

U0(C ′) U1(B)

T 1(f) θ1A

U1(f)

θ1B

is commutative.
Finally, we show that θ1A is commutative with the connecting morphisms. Let

0 A1 A2 A3 0

be a short exact sequence in A , we use the same method as above for the injection u : A1 →M
with T 1(u) = 0 so that each row of the following commutative diagram is exact.

0 A1 A2 A3 0

0 A1 M C 0
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We consider the following diagram.

T 0(A3) T 1(A1)

U0(A3) U1(A1)

T 0(C) T 1(A1)

U0(C) U1(A1)

θA3

δ

θ1A1δ

θC

δ

θ1A1δ

The desired commutativity of θ1A1
, θA3 and δ follows from commutativity of other squares,

which follow from the construction of θ1A1
and the facts that T • and U• are δ-functors and that

θ is a natural transformation.
This shows that θ1 is a natural transformation commutative with connecting morphisms, and

its uniqueness can be seen from its construction (the universality of cokernel). In this way, θi+1

can be constructed from θi inductively on i. �

Corollary 1.9. Let A ,B be Abelian categories, and suppose A has enough injectives. Let
T • : A → B be a universal δ-functor, then T 0 is left-exact and for each i ≥ 0 there is a natural
isomorphism T i ∼= RiT 0.

Proof. T 0 is left exact by the definition of a δ-functor, so there are right derived functors RiT 0.
For each i > 0, RiT 0 is effaceable by (4) of Proposition 1.5, then R•T 0 is an universal δ-functor.
Now R0T 0 = T 0, so there is a unique isomorphism R•T 0 ∼= T • by universality. �

Although we discussed the cochain complex here, we can make a similar argument for a left
derived functor by considering a chain complex.

As typical examples of derived functors, we define Tor and Ext.

Definition 1.10. For an M ∈ ModA, the functor M ⊗ − is right exact. We denote by
Tor•(M,−) the left derived functor of this. Also, we define Ext•(M,−) to be the right derived
functor of the left exact functor Hom(M,−).

Ext groups may also be obtained as the derived functor of Hom(−, N), but by computing
the double chain complex we see that these two definitions coincide.

1.3. Homological dimensions.
The concept of dimensions defined by homological information such as the projective dimen-

sion and global dimension is collectively called a homological dimension.

Definition 1.11. Let A be a ring. For an M 6= 0 ∈ ModA, we denote by prj.dimAM the
minimal length among all projective resolutions of M . Similarly, we define inj.dimAM to be
the minimal length among all injective resolutions of M . For M = 0, we define prj.dimM =
inj.dimM = −∞.

Note that for each M ∈ ModA and n ≥ 0;
prj.dimM ≤ n⇐⇒ For all N ∈ ModA,Extn+1(M,N) = 0,
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inj.dimM ≤ n⇐⇒ For all N ∈ ModA,Extn+1(N,M) = 0.

The following theorem is well known and very powerful.
Theorem 1.12 (Auslander–Buchsbaum). Let (A,m) be a Noetherian local ring. For an M 6=
0 ∈ modA with prj.dimM <∞;

prj.dimM + depthM = depthA.

Proof. [Mat86, Theorem 19.1] or [BH97, Theorem 1.3.3]. �

Definition 1.13. A Noetherian local ring (A,m) is called a Gorenstein ring if inj.dimA <∞.
For an arbitrary Noetherian ring A, A is called Gorenstein if for each P ∈ SpecA,AP is
Gorenstein.

The second half of the definition is justified by the following lemma.
Lemma 1.14. Let A be a Noetherian ring. For each multiplicatively closed subset S ⊂ A and
an injective A-module E, ES is an injective AS-module.
Proof. [Mat86, §18, lemma 5.]. �

We note that a Gorenstein ring is Cohen–Macaulay by the following theorem.
Theorem 1.15. Let (A,m, k) be a Noetherian local ring with dimA = d. The following are
equivalent.

(1) A is Gorenstein, i.e. inj.dimA <∞.
(2) inj.dimA = d.
(3) Extd(k,A) ∼= k and for each i 6= d,Exti(k,A) = 0.
(4) A is Cohen–Macaulay and Extd(k,A) ∼= k.
(5) A is Cohen–Macaulay and all ideals generated by a parameter system are irreducible.
(6) A is Cohen–Macaulay and there is an ideal generated by a parameter system which is

irreducible.
(7) There is an i > d with Exti(k,A) = 0.

Proof. [Mat86, Theorem 18.1]. �

2. weakly proregular sequence

In this section we present the theory of weakly proregular sequence following [And21].

2.1. Overview.
Let A be a ring and I an ideal of A. The functor ΓI is defined by;

ΓI(M) := {x ∈M | Inx = 0 for some n ≥ 0}
for an M ∈ ModA. Then, the local cohomology functors H i

I(−) are defined as the right derived
functors of ΓI(−). In Noetherian cases, the local cohomology can be written by using the Čech
cohomology as follows.
Theorem 2.1. Let A be a Noetherian ring, a = a1, . . . , ar a sequence of elements of A and
I = (a1, . . . , ar). Ȟ i(a,M) denotes the Čech cohomology (see Definition 2.3). Then, there are
isomorphisms;
(∗) H i

I(M) ∼= Ȟ i(a,M)

for any M ∈ ModA.
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See [BH97, Theorem 3.5.6.] for the proof. This result was generalised by [Sch03]. For an
arbitrary ring A and a sequence a = a1, . . . , ar with I = (a1, . . . , ar), he showed that formula
(∗) is true for any M ∈ ModA if and only if a is a weakly proregular sequence in the following
sence. Let Hi(a) be the Koszul homology of the sequence a. a = a1, . . . , ar is called a weakly
proregular sequence if for any 1 ≤ i ≤ r and for each n > 0 there is an m ≥ n such that the
natural map

Hi(a
m)→ Hi(a

n)

is the zero map, where an is the sequence defined by an1 , . . . , anr .
The goal of this section is to explain the following result without using notions of derived

category theory.

Theorem 2.2 ([Sch03, Theorem 3.2]). Let A be a ring, a = a1, . . . , ar a sequence of elements
of A and I = (a1, . . . , ar). a is a weakly proregular sequence if and only if for any i and
M ∈ ModA, H i

I(M) ∼= Ȟ i(a,M) functorially on M .

In subsection 2.2 we review the definition of Čech cohomology in commutative algebra. In
subsection 2.3 we present the theory of weakly proregular sequences, following [Sch03, Sect.
2]. As for the weakly proregular sequence and Koszul homology, [PSY14, Sect. 4] also obtains
some results using derived categories with a different approach from [And21]. Finally, we prove
Theorem 2.2 in subsection 2.4.

2.2. Čech cohomology and Koszul complex.
In this subsection, we review the Čech cohomology of rings and modules. Let A be a ring and

fix a sequence a1, . . . , ar of elements of A. For each I = {j1, . . . , ji} ⊂ {1, . . . , r} (j1 < · · · < ji),
let aI = aj1 . . . aji . e1, . . . , er denotes the standard basis of Ar and let eI = ej1 ∧ · · · ∧ eji .

Definition 2.3. Let A be a ring, a = a1, . . . , ar ∈ A. For each 1 ≤ i ≤ r, Ci(a) is the module
defined by the following equation

Ci(a) :=
∑
#I=i

AaIeI .

Then we define C•(a) to be the complex defined by the following differentials

di : Ci(a)→ Ci+1(a); eI 7→
n∑
j=1

eI ∧ ej .

It is called a Čech complex. Ȟ i(a) denotes the cohomology of this complex and it is called a
Čech cohomology.

For an M ∈ ModA, we define C•(a,M) := C•(a)⊗M . Here Ȟ i(a,M) denotes the cohomol-
ogy of C•(a,M).

Proposition 2.4. Let A be a ring. For each a = a1, . . . , ar ∈ A, Ȟ•(a,−) = {Ȟ i(a,−)}i≥0

constitutes a δ-functor.

Proof. Consider an exact sequence of A-modules

0 M1 M2 M3 0 .
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Since C•(a,−) = C•(a) ⊗ − and each component of the Čech complex is a flat A-module, the
following sequence of complexes is exact;

0 C•(a,M1) C•(a,M2) C•(a,M3) 0

then there are connecting morphisms. So Ȟ•(a,−) is a δ-functor. �

For the result we want, we need to look at the relationship between Čech complex and Koszul
complex.

For a = a1, . . . , ar ∈ A, let {ei} be the standard basis of a free A-module Ar. f : Ar →
A; ei 7→ ai induces a chain complex K•(a). In other words, K•(a) is the complex defined by
following equations;

Ki(a) :=
i∧
Ar,

di : Ki(a)→ Ki−1(a);x1 ∧ · · · ∧ xi 7→
i∑

j=1

(−1)j+1f(xj)x1 ∧ · · · ∧ x̂j ∧ · · · ∧ xi.

Note that K•(a) does not depend on the order of ai .
We get a co-chain complex K•(a) via the contravariant functor Hom(−, A);

K•(a) : 0 A Hom(K1(a), A) · · · .

K•(a) is called a Koszul complex. For each M ∈ ModA, K•(a,M) = K•(a)⊗M . We denote
by H i(a,M) the cohomology of Koszul complex.

Lemma 2.5. Let A be a ring and a = a1, . . . , ar ∈ A. For each 1 ≤ i ≤ r;

ϕi : Ki(a)→ Ci(a); (eI)
∗ 7→ (1/aI)eI

is a morphism of complexes.

Proof. Let δi be the differential of the Koszul complex. Then;

δi(e∗I)(eJ) =

{
aj (j 6∈ I, J = I ∪ {j})
0 (otherwise)

So
ϕi+1 ◦ δi(e∗I) =

∑
j 6∈I

aj
aIaj

eI ∧ ej =
∑
j 6∈I

1

aI
eI ∧ ej

is equal to di ◦ ϕi(e∗I). �

For any pair n ≤ m, we set

ϕ•
mn : K

•(an)→ K•(am); (eI)
∗ 7→ (aI)

m−n(eI)
∗

then {K•(an), ϕ•
mn}n∈N is an inductive system.

Proposition 2.6. Let A be a ring, a1, . . . , ar ∈ A. Then;

lim−→K•(an) ∼= C•(a).
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Proof. We define ϕ•
n : K

•(an) → C•(an) = C•(a) in the same way the an above lemma. Then
ϕ•
m ◦ ϕ•

nm = ϕ•
n where n ≤ m. So we have ϕ : lim−→K•(an) → C•(a). Each element of Ci(a) is

represented by a finite sum of (bI/anI
I )eI , so it can be displayed as

∑
(1/anI )bIeI by taking the

maximum of n = max{nI} and replacing bI . Then it is the image of
∑

(bIeI) ∈ Ki(an) , so ϕ
is surjective.

Secondly, we show ϕ is injective. Assume ϕin(x) = 0 for x ∈ Ki(an). If x =
∑
bIe

∗
I then

ϕin(x) =
∑

(bI/a
n
I )eI = 0, so bI/a

n
I = 0 in AanI . Therefore if we take a sufficiently large l,

alIbI = 0. So ϕiln(x) = 0 by increasing l thus ϕ is injective. �

Since the functor of taking the inductive limit is exact, the following corollary follows.

Corollary 2.7. Let A be a ring, a1, . . . , ar ∈ A. For each M ∈ ModA;
Ȟ i(a,M) ∼= lim−→H i(an,M).

2.3. Weakly proregular sequences.
In this subsection, we summarise the weakly proregular sequence following [Sch03, Sect.2].

Definition 2.8. Let A be an Abelian category, (Xn, ϕmn) a projective system in A . (Xn) is
said to be essentially zero or pro-zero if for each n, there is an m ≥ n such that ϕmn : Xm →
Xn is the zero map.

Obviously, if (Xn) is essentially zero then lim←−Xn = 0.

Proposition 2.9 ([Gro66, §2, Remark 2]). Let A be an Abelian category. We consider an
exact sequence of projective systems in A ;

0 (Xn) (Yn) (Zn) 0 .

Then (Yn) is essentially zero if and only if the other two are essentially zero.

Proof. If (Yn) is essentially zero, then it is clear that the other two are so. We show the opposite.
For each n, there is an m ≥ n such that Xm → Xn is the zero map since (Xn) is essentially
zero. Similarly there is an l ≥ m such that Zl → Zm is the zero map, then we have the following
commutative diagram with the exact rows;

0 Xl Yl Zl 0

0 Xm Ym Zm 0

0 Xn Yn Zn 0

ϕlm 0

0 ϕmn

So we get ϕln = ϕmn ◦ ϕlm = 0 by an easy diagram chasing. �

We use same symbols as before for the Koszul and Čech complexes. Note that (Ki(a
n))n∈N

is a projective system defined by Ki(a
m)→ Ki(a

n); eI 7→ am−n
I eI (m ≥ n).

Definition 2.10. Let A be a ring. a = a1, . . . , ar ∈ A is called a weakly proregular sequence
if for each 1 ≤ i ≤ r, the projective system {Hi(a

n)} is essentially zero.

The property of being weakly proregular does not depend on the order of a by the definition.
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Proposition 2.11. Let A be a ring, a = a1, . . . , ar ∈ A. a is a weakly proregular sequence if
and only if Ȟ i(a,−) is an effaceable functor for i > 0.

Proof. Assume that a is a weakly proregular sequence. Let I be an injective module. Now
there is an isomorphism H i(an, I) ∼= Hom(Hi(a

n), I) since K•(an, I) = Hom(K•(a
n), I) and

Hom(−, I) is an exact functor. For each n ≥ 0, there is an m ≥ n such that Hi(a
m)→ Hi(a

n)
is the zero map since Hi(a

n) is essentially zero. So Ȟ i(a, I) = lim−→H i(an, I) = 0.
Secondly, assume that Ȟ i(a,−) is an effaceable functor for i > 0. For each n ≥ 0, we have

an injective module I and an injection ε : Hi(a
n)→ I. Then there is an m ≥ n such that;

Hi(a
m) Hi(a

n) Iε

is the zero map by ε ∈ H i(an, I) and lim−→H i(an, I) = 0. �

From Corollary 1.9, Čech cohomology is the derived functor of Ȟ0(a,−) if a is a weakly
proregular sequence. So the next question of interest is when is a sequence weakly proregular.
We introduce proregular sequences by [GM92], and prove that every sequence a is weakly
proregular in the Noetherian case.

Definition 2.12. Let A be a ring, a = a1, . . . , ar ∈ A. a is called a proregular sequence if for
each 1 ≤ i ≤ r and n > 0, there is an m ≥ n such that ((am1 , . . . , ami−1) : a

m
i A) ⊂ ((an1 , . . . , a

n
i−1) :

am−n
i A).

Note that a regular sequence is proregular.

Proposition 2.13 ([Sch03, Sect. 2]). Let A be a Noetherian ring. For each a = a1, . . . , ar ∈ A,
a is a proregular sequence.

Proof. Let Jm := ((am1 , . . . , a
m
i−1) : ami A), In,m := ((an1 , . . . , a

n
i−1) : am−n

i A). For each n,
{In,m}m≥n is an ascending chain of ideals, hence there is an m0 ≥ n such that for each
m ≥ m0, In,m0 = In,m. Let m := m0 + n, then for each a ∈ Jm0 , aam−n

i = aam0
i ∈

(am0
1 , . . . , am0

i−1) ⊂ (an1 , . . . , a
n
i−1). So a ∈ In,m = In,m0 . �

Proposition 2.14 ([Sch03, lemma 2.7]). Let A be a ring. A proregular sequence is weakly
proregular.

Proof. We use induction on r. When r = 1, let a ∈ A be proregular. Then for each n > 0, there
is an m ≥ n such that Ann am ⊂ Ann am−n. So (H1(a

n)) is essentially zero since H1(a
n) =

Ann an. Now we assume that claim holds up to r− 1. For a = a1, . . . , ar and a′ = a1, . . . , ar−1,
the exact sequence of complexes;

0 K•(a
′n) K•(a

n) K•(a
′n)(−1) 0

induces the exact sequence of homology;

· · · Hi(a
′n)

Hi(a
′n) Hi(a

n) Hi−1(a
′n)

Hi−1(a
′n) · · ·

(−1)ianr

(−1)i−1anr
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hence we have the following exact sequence;

0 H0(a
n
r ,Hi(a

′n)) Hi(a
n) H1(a

n
r ,Hi−1(a

′n)) 0

and this induces the exact sequence of projective systems. The first projective system is essen-
tially zero by the assumption of induction. Also for each i > 1, the third system is essentially
zero since H1(a

n
r ,Hi−1(a

′n)) = {x ∈ Hi−1(a
′n) | anrx = 0}. If i = 1, the system with ;

H1(a
n
r ,H0(a

′n)) =
{
x ∈ H0(a

′n)
∣∣ anrx = 0

}
is essentially zero since a is proregular. So this completes the proof by the induction. �

Corollary 2.15. Let A be a Noetherian ring. For each a = a1, . . . , ar ∈ A, a is weakly
proregular.

2.4. Local cohomology.
Let A be a ring and I an ideal of A. The functor ΓI(−) is defined by;

ΓI(M) := {x ∈M | Inx = 0 for some n ≥ 0}
for an M ∈ ModA. Note that ΓI(M) = lim−→HomA(A/I

n,M) and this isomorphism is functorial
in M . By the definition, ΓI is a left exact functor.

Definition 2.16. Let A be a ring and I an ideal of A. H i
I(−) denotes the derived functor of

ΓI(−) and it is called a local cohomology.

Note that H i(M) ∼= lim−→Exti(A/In,M).
The definition of the local cohomology (ΓI(−)) in the above is standard in commutative

algebra (e.g., [BH97]), but differs from the one of [Sch03]. Schenzel defines
ΓI(M) := {x ∈M | Supp(Ax) ⊂ V (I)} .

We show that if I is finitely generated, then it coincides with the above definition.

Proposition 2.17. Let A be a ring, I a finitely generated ideal. For each M ∈ ModA;
(∗) {x ∈M | Inx = 0 for some n ≥ 0} = {x ∈M | Supp(Ax) ⊂ V (I)} .

Proof. Note that Supp(Ax) = V (Annx) since Ax ∼= A/Annx. For x ∈M,V (Annx) ⊂ V (I) if
and only if

√
I ⊂
√
Annx. If there is an n ≥ 0 such that Inx = 0, then

√
I ⊂
√
Annx. So we

get that ⊂ holds in the equation (∗). The above holds even if I is not finitely generated, but
this assumption is necessary for the inclusion of the reverse. If I is finitely generated, obviously√
I ⊂
√
Annx implies there is an n ≥ 0 such that Inx = 0. �

Here is an example where the equality of (∗) does not hold if I is not finitely generated.

Example 2.18. Let k be a field. Let A := k[y, x1, x2, . . . ]/(yx1, yx
2
2, . . . ) and I := (x1, x2, . . . ).

Now Supp(Ay) ⊂ V (I) but there is no n ≥ 0 such that Iny = 0.

In this paper, we only deal with the local cohomology when I is finitely generated, so there
is no problem.

We summarise the relationship between local cohomology and Čech cohomology. First, we
note that the 0-th part of each cohomologies are naturally isomorphic.

Lemma 2.19. Let A be a ring, a = a1, . . . , ar ∈ A, and I = (a1, . . . , ar). For each M ∈ ModA;
ΓI(M) ∼= Ȟ0(a,M).
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Proof. Here Ȟ0(a,M) is the kernel of

M →
r⊕
i=1

Maiei;x 7→ (x/1)ei.

Then for each x ∈ Ȟ0(a,M) and 1 ≤ i ≤ r, there is an ni ≥ 0 such that ani
i x = 0. So we have

x ∈ ΓI(M). Similarly the converse is true, so they are equal as submodules of M . �

With the preparations we have made above, we can prove the results we have been aiming
for.

Theorem 2.20 (An elementary proof of [Sch03, Theorem 3.2]). Let A be a ring, a = a1, . . . , ar ∈
A and I = (a1, . . . , ar). Then, a is a weakly proregular sequence if and only if for any i and
M ∈ ModA, H i

I(M) ∼= Ȟ i(a,M) functorially on M .

Proof. Assume that a is weakly proregular. Ȟ•(a,−) is a δ-functor by Proposition 2.4. Moreover
Ȟ•(a,−) is universal by Proposition 2.11 and Definition-Proposition 1.8. So H i

I(M) ∼= Ȟ i(a,M)
by the above lemma. The converse is true by Proposition 2.11. �

Corollary 2.15 shows that Theorem 2.1, which states that always there are isomorphisms
between local cohomologies and Čech cohomologies in the Noetherian case, is a special case of
Theorem 2.20.

3. Perfect rings in commutative ring theory

In this section, we discuss perfectness in commutative ring theory.
3.1. Overview.

In commutative ring theory, it is essential to calculate the homological dimension to see the
homological properties of modules. When A is a Noetherian local ring, any M ∈ modA has
the minimal free resolution. The length of it equals prj.dimM , therefore it is one of the
minimal resolutions ([Mat86, §19, lemma 1]). It is a natural question to ask whether this can
be generalised to the case of non-Noetherian rings. As one solution, we prove that any module
has a projective resolution whose length is minimal if A is a perfect ring (see Definition 3.10,
Proposition 3.11). In subsection 3.1, we present the propositions described above.

In subsection 3.2, we survey the facts about perfect rings mainly according to [Bas60].
In subsection 3.3, we consider a direct product of projective modules and a direct sum of

injective modules. In the Noetherian cases, the following theorem is well-known.

Theorem 3.1. Let A be a ring. A is a Noetherian ring if and only if every direct sum of
injective A-modules is again injective.

This fact is mentioned in [BH97, Remark 3.1.4.] without proof. We give the proof of this
proposition in Theorem 3.20. In non-commutative ring theory, Chase ([Cha60]) considered the
condition for an infinite direct product. Here, we introduce the case where commutativity is
assumed.

Theorem 3.2 ([Cha60, Theorem 3.4]). Let A be a ring. A is an Artinian ring if and only if
every product of projective A-modules is again projective.

It is interesting that in these two theorems, the conditions on the right-hand side have du-
ality in the categorical sense, but the left-hand side conditions don’t since an Artinian ring is
Noetherian.
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The argument in [Cha60] contains a difficult discussion, and in this paper, we try to simplify
the proof by adding the assumption that the ring is commutative.

In 3.4 we summarise the previous discussion and discuss the hierarchy of classes of rings
around perfectness. It should be noted that the discussions in 3.3 and 3.4 include works in
progress, and many of the results are budding and have not yet reached a final conclusion.

3.2. Minimal projective resolutions.
First, we introduce the projective cover to define the minimal projective resolution.

Definition 3.3. Let A be a ring and M ∈ ModA. A submodule N ⊂ M is said to be
superfluous if for each submodule L ⊂M,L+N =M implies L =M . Let P be a projective
module and ε : P → M a surjection. A pair (P, ε) is called a projective cover of M if
ker ε ⊂ P is superfluous.

We restate the definition of the projective cover in terms of morphisms.
Proposition 3.4. Let A be a ring, M ∈ ModA and ε : P →M a surjection from a projective
module P . The followings are equivalent.

(i) ε : P →M is a projective cover.
(ii) For each N ∈ ModA and an A-linear map ϕ : N → P , if ε ◦ ϕ is surjective then ϕ is a

surjection.
(iii) For each ϕ ∈ HomA(P, P ), ε ◦ ϕ = ε implies ϕ is an isomorphism.

Proof.
(i) =⇒ (ii)

For each x ∈ P , there is a y ∈ N with ε(ϕ(y)) = ε(x). So x−ϕ(y) ∈ ker ε, then ker ε+Imϕ =
P . Hence Imϕ = P since ker ε is a superfluous submodule of P .

(ii) =⇒ (iii)
Since P is projective, there is a ψ ∈ Hom(P, P ) such that ϕ ◦ ψ = idP . Then, the following

diagram
P

P P

M

ψ id

ε

ϕ

ε

is commutative. So ψ is surjective by (ii). Hence ϕ and ψ are isomorphisms.
(iii) =⇒ (i)
Let L be a submodule of P such that L+ker ε = P . For the inclusion ι : L→ P, ε◦ι : L→M

is surjective. Then, there is an f : P → L such that the following diagram

P

L M 0

P

f
ε

ι

ε◦ι

ε

is commutative. So ι ◦ f is an isomorphism, and especially ι is surjective. Hence L = P . �
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Corollary 3.5. Let A be a ring, M ∈ ModA. A projective cover of M is unique if it exists.

Proof. Suppose M has two different projective covers P, P ′. So there is an f : P ′ → P such
that the following diagram

P ′

P M 0

f
ε′

ε

is commutative. By interchanging P and P ′ in the above diagram, we see that there is a
g : P → P ′ and that ε′ = ε◦f, ε = ε′ ◦g holds. Hence ε = ε◦ (f ◦g), and f ◦g is an isomorphism
by the above proposition, and so is g ◦ f . Thus f : P → P ′ is isomorphic. �

Using the projective cover, we can consider a generalisation of the minimal free resolution.

Definition 3.6. Let A be a ring, M ∈ ModA. A projective resolution of M

· · · P1 P0 M 0
d1 ε

is called a minimal projective resolution if for each i ≥ 0, di : Pi → ker di−1 (d0 := ε, d−1 :=
0) is a projective cover.

Note that a minimal projective resolution is unique if it exists. We prove that it is a projective
resolution whose length is minimal.

Lemma 3.7. Let A be a ring, M an A-module which is not projective, and ε : P → M a
surjection from a projective module. Now

prj.dimM = prj.dimker ε+ 1.

Proof. We set n := prj.dimM , and K := ker ε. For each N ∈ ModA, we consider the long exact
sequence of Ext induced by the exact sequence 0 K P M 0 ;

Exti(P,N) Exti(K,N) Exti+1(M,N) Exti+1(P,N) = 0 .

For i > 0, Exti(K,N) ∼= Exti+1(M,N) since P is projective. So if n =∞, prj.dimK =∞.
The remaining case is for n < ∞. We can see prj.dimK ≤ n − 1 by considering the above

exact sequence for i = n + 1. Now there is an N ′ ∈ ModA such that Extn(M,N ′) 6= 0 since
prj.dimM 6≤ n−1. So Extn−1(K,N ′) 6= 0, then prj.dimK 6≤ n−2. Hence prj.dimK = n−1. �

Proposition 3.8. Let A be a ring, M 6= 0 an A-module. If the minimal projective resolution
of M exists and the length of it is n, then prj.dimM = n.

Proof. This proposition is obvious if M is projective. Suppose that M is not projective.
prj.dimM = prj.dimker ε + 1 by the above lemma. When n = 1, ker ε = P1 is projective.
So prj.dimM = 1. For n > 1, ker ε is not projective. Therefore, we apply the lemma repeatedly
to obtain prj.dimM = prj.dimker dn−1 + n. Now ker dn−1

∼= Pn, then prj.dimM = n. �

A significant difficulty is that a projective cover may not exist.

Example 3.9. Z/nZ does not have a projective cover as a Z-module (n > 1).
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Note that Z/nZ is not projective for n > 1. Now, if ε : P → Z/nZ is a projective cover,
then the natural map Z → Z/nZ is a surjection from a projective module, so by Proposition
3.4 there exists a surjection Z → P . So there is m such that P ∼= Z/mZ. Now Z → Z/nZ is
not a projective cover because nZ is not superfluous. So m > 1 but it is a contradiction since
Z/mZ is not projective for m > 1. Hence Z/nZ does not have a projective cover.

It turns out that prj.dimM is determined if we can take the minimal projective resolution
of M , but the main obstacle is that a projective cover may not exist. As can be seen from
the above example, even for PIDs, there is not always a projective cover. However, for finitely
generated modules over Noetherian local rings, there is a minimal free resolution which satisfies
the definition of a minimal projective resolution.

One (somewhat aggressive) solution is to consider a class of rings such that every module has
a projective cover. A ring is called perfect if it satisfies this condition. In the next subsection,
we give an overview of perfect rings.

3.3. Perfect rings.
In this subsection, we review the concept of perfectness in commutative ring theory.

Definition 3.10. Let A be a ring. A is said to be perfect if each M ∈ ModA has a projective
cover. A is called semiperfect if the same condition holds for modA.

The following proposition follows immediately from the definition.
Proposition 3.11. Let A be a perfect ring. Then, each M ∈ ModA has the minimal projective
resolution.

Note that even if A is semi-perfect, M ∈ modA may not have the minimal projective resolu-
tion. This is because for a projective cover ε : P →M , ker ε may not be finitely generated.

Perfect rings have been studied in the context of non-commutative ring theory. We summarise
some terminologies which are often used in non-commutative ring theory but not so often in
commutative algebra. For more details, see [Lam01], a textbook on non-commutative ring
theory.

First, we define simple modules.
Definition 3.12. Let A be a ring. M 6= 0 ∈ ModA is said to be simple if M does not have
non-trivial submodules. A direct sum of simple modules is called semisimple.

We denote by SpmA the set of all maximal ideals of A. In non-commutative ring theory, the
classification of simple objects is a fundamental problem, but in commutative ring theory, the
situation is very “simple”.
Proposition 3.13. Let A be a ring. M 6= 0 ∈ ModA is simple if and only if there is an
m ∈ SpmA such that M ∼= A/m.
Proof. Suppose M is simple. We take x 6= 0 ∈M . Now M = Ax since M is simple. Then, the
linear map ϕ : A → M ; a 7→ ax is surjective. So M ∼= A/ kerϕ. Here, kerϕ is maximal since
A/ kerϕ ∼=M is simple. The opposite is trivial. �

Thus a semisimple module over a commutative ring is isomorphic to a direct sum of residue
fields. In non-commutative rings, we often define a semilocal ring by using a semisimple ring.
That is, a ring A is said to be semilocal if A/ radA is a semisimple ring. Here radA =⋂

m∈SpmAm is the Jacobson radical of A. This definition is equivalent to the standard definition
in commutative ring theory. That is, the following holds.
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Proposition 3.14 ([Lam01, Proposition 20.2]). Let A be a ring. SpmA is a finite set if and
only if A/ radA is semisimple.

Proof. Suppose SpmA is finite. Let m1, . . . ,mr be the all maximal ideals of A. Any two of them
are coprime, so A/ radA ∼= A/m1 × · · · × A/mr by the Chinese remainder theorem. We show
the opposite. Suppose A/ radA is semisimple. By Proposition 3.13, A/ radA can be written in
the following form

A/ radA =
⊕

m∈SpmA

A/m.

Now SpmA is a finite set since the left-hand side of above equation is finitely generated. �

Next we will define some terms for an idempotent.

Definition 3.15. Let A be a ring, I an ideal of A. Two idempotents e, f ∈ A are said to be
orthogonal if ef = 0. An idempotent e ∈ A is called a local idempotent if Ae ∼= EndA(Ae)
is a local ring. Also, we say that an idempotent e+ I ∈ A/I can be lifted modulo I if there
is an idempotent f ∈ A such that e+ I = f + I.

Definition 3.16. Let A be a ring. An ideal I is said to be transfinite nilpotent if for each
sequence {ai} ⊂ I, there is an n ≥ 1 such that a1 . . . an = 0.

We introduce the restatement of perfect rings by [Bas60].

Theorem 3.17 (Bass). Let A be a ring. The following are equivalent.
(i) The ring A is perfect.
(ii) The ring A is semilocal and radA is transfinite nilpotent.
(iii) Any direct limit of projective A-modules is projective.
(iv) The ring A satisfies the descending chain condition on principal ideals.

Proof. See [Bas60, Theorem P]. �

For a semiperfect ring, the following characterisation is studied by [Bas60] and [Mül70].

Theorem 3.18 (Bass–Müller). Let A be a ring. The following are equivalent.
(i) A is semiperfect.
(ii) A is semilocal and each idempotent of A/ radA can be lifted modulo radA.
(iii) The identity 1 ∈ A is the sum of local orthogonal idempotents.

Proof. See [Bas60, Theorem 2.1] and [Mül70, Theorem 1]. �

Note that [Bas60] and [Mül70] studied this in the context of non-commutative ring theory.
By the above theorem, we get the following proposition in commutative ring theory.

Proposition 3.19 ([Lam01, Theorem 23.11]). Let A be a ring. A is semiperfect if and only if
A is a finite direct sum of local rings.

Proof. Suppose A is semiperfect. By Theorem 3.18, there are orthogonal idempotents e1, . . . , er
such that 1 = e1 + · · ·+ er. Thus

A→ Ae1 ⊕ · · · ⊕Aer; a 7→ (ae1, . . . , aer)
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is an isomorphism. We show the opposite. Let (Ai,mi) be local rings and A = A1 ⊕ · · · ⊕ Ar.
Suppose (ai) + radA is an idempotent. If ai 6∈ mi, then 1 − ai ∈ mi since ai − a2i ∈ mi. We
define bi by the following equation

bi :=

{
0 if ai ∈ mi,

1 if ai 6∈ mi.

Thus (ai) + radA = (bi) + radA and (bi) is an idempotent in A. �

3.4. Chase’s theorem.
By Theorem 3.17, an Artinian ring is perfect. In this subsection, we discuss Chase’s theorem

(Theorem 3.2) for projective modules on Artinian rings.
Let A be an Abelian category. In A , a direct sum of a family of projective objects is again

projective and a direct product of a family of injective objects is again injective. It is natural to
ask what happens if we interchange direct sum and direct product. In commutative ring theory,
the following theorem is well-known. This fact is mentioned in [BH97, Remark 3.1.4.] without
proof. Here we give a proof.

Theorem 3.20. Let A be a ring. A is a Noetherian ring if and only if for each family of
injective modules {Eλ}λ∈Λ, the direct sum

⊕
λ∈ΛEλ is again injective.

Proof. Suppose A is Noetherian. Let I be an ideal of A and ϕ : I →
⊕
Eλ a linear map. There

is a finite subset Λ′ = {λ1, . . . , λn} ⊂ Λ such that ϕ(I) ⊂
⊕

λ∈Λ′ Eλ since I is finitely generated.
Let ϕi the composite of ϕ and the natural map

⊕
Eλ → Eλi . Now there are ϕ̃i : A → Eλi

which is an extension of ϕi, then

ϕ̃ : A→
⊕
λ∈Λ

Eλ; 1 7→
n∑
i=1

ϕ̃i(1)

is an extension of ϕ. So
⊕
Eλ is injective by the Baer’s criterion ([Mat86, Theorem B3]).

We show the opposite. We consider the ascending chain of ideals I1 ⊂ · · · ⊂ Ii ⊂ · · · . Let
I =

⋃
Ii. For each i, there exists an injective module Ei containing A/Ii since ModA has

enough injectives. The following linear map

ϕ : I →
⊕

Ei; a 7→ (a+ Ii)

can be extended to ϕ̃ : A →
⊕
Ei since

⊕
Ei is injective. Let (xi) := ϕ̃(1). The number of i

for which xi 6= 0 holds is finite, and let n be its maximum. Then for each i > n, a+ Ii = 0 for
any a ∈ I. So A is Noetherian. �

As for a product of projective modules, there are examples over Noetherian rings that is not
projective.

Example 3.21.
∏
n∈N Z is not a projective Z-module. Since any projective module over a PID

is free ([HS97, Corollary 5.2]), we need to show that
∏
n∈N Z is not free. This fact is proved in

[Bae37]. Also, a short proof of this fact can be found in [Sch08].

In non-commutative ring theory, Chase ([Cha60]) proved Theorem 3.2 which is the dual of
Theorem 3.20. We give a simple proof of a part of Chase’s theorem, under the commutativeity
condition.
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Proposition 3.22. Let A be an Artinian ring. For each family of projective modules {Pλ}λ∈Λ,
the product

∏
λ∈Λ Pλ is again projective.

Proof. By the structure theorem for Artinian rings ([AM69, Theorem 8.7]), A is a finite direct
sum of Artinian local rings. Note that for a product ring A =

∏
Ai and P =

∏
Pi ∈ ModA, P

is projective if and only if all Pi are projective. Therefore, we can assume that A is local. Let
m be the maximal ideal of A, P :=

∏
Pλ. We take a composition series of m

0 = mn ⊂ · · · ⊂ m0 = m.

Note that P is projective if and only if P is free, by the Kaplansky’s theorem ([Mat86, Theorem
2.5]). To prove the proposition, it suffices to show the following claim.

For each 0 ≤ i ≤ n, we show that if P/miP is a free A/mi-module then P/mi+1P is a free
A/mi+1-module and a basis of P/miP can be lifted to P/mi+1P .

We prove this by induction. Let {eλ′}λ′∈Λ′ be a basis of the A/m-linear space P/mP . Sup-
pose P/miP ∼=

⊕
λ′∈Λ′(A/mi)eλ′ . For each a ∈ mi \ mi+1, a· : P/mP → miP/mi+1P is an

isomorphism. The reason is that the following equations

P/mP =
∏

Pλ/mPλ, miP/mi+1P =
∏

miPλ/mi+1Pλ

hold and we can assume that Pλ = A since Pλ is free. So⊕
(mi/mi+1)eλ′ ∼=

⊕
(A/m)eλ′ ∼= miP/mi+1P.

Thus, the following diagram

0
⊕

(mi/mi+1)eλ′
⊕

(A/mi+1)eλ′
⊕

(A/mi)eλ′ 0

0 miP/mi+1P P/mi+1P P/miP 0

∼= ∼=

is commutative and the five lemma implies P/mi+1P ∼=
⊕

(A/mi+1)eλ′ . Thus, the above claim
is proved. �

3.5. Hierarchy of classes of rings around perfectness.
In proof of Theorem 3.2, Chase proved that A satisfies DCCP (Descending Chain Condition

of Principal ideals) if a direct product of the projective modules is again projective [Cha60,
Theorem 3.1]. By [Bas60, Theorem P](Theorem 3.17), a ring A is perfect if and only if A
satisfies DCCP. So Chase’s theorem can also be considered as an argument related to perfect
rings. In this subsection, we discuss the hierarchy of classes of rings around perfectness.

Proposition 3.23. Let A be a ring. If A satisfies DCCP, then dimA = 0.

Proof. We take each P ∈ SpecA. It suffices to show that A/P is a field. For each a 6∈ P ,
there is an n > 0 such that (an) = (an+1). So there exists an element b ∈ A such that
an+1b− an = an(ab− 1) = 0 ∈ P . Since a 6∈ P, ab− 1 ∈ P . Therefore ab+ P = 1 + P ∈ A/P .
Thus A/P is a field. �

Corollary 3.24. Let A be a ring. A is Artinian if and only if A is Noetherian and perfect.

Proof. It is clear that the Artinian ring is perfect by Theorem 3.17. Also if A is perfect then
dimA = 0 by the above proposition. So a Noetherian perfect ring is Artinian. �
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For the class of 0-dimensional Gorenstein rings which is smaller than the class of Artinian
rings, we can show the following proposition.

Proposition 3.25. Let A be a ring. We denote by PrjA the category of projective A-modules
and by InjA the category of injective A-modules. A is Gorenstein and dimA = 0 if and only if
PrjA = InjA as subcategories of ModA.

Proof. Suppose A is Gorenstein. First, we show that all projective modules are injective. It
suffices to show that HomA(A,A)→ HomA(I, A) is surjective for any ideal I by Baer’s Criterion.
Since surjectivity is a local property and [Mat86, Themrem 7.11], it suffices to consider the
localisation for any P ∈ SpecA. Now HomAP

(AP , AP ) → HomAP
(IP , AP ) is surjective since

AP is injective. So A is injective. Therefore, all free modules are injective, and projective
modules are their direct summand, so they are injective. Next, we show that all injective
modules are projective. By structure theorem for injective modules over Noetherian rings
([BH97, Theorem 3.2.8]), every injective A-module can be written in the form of a direct sum
of E(A/P ) (P ∈ SpecA). Furthermore;

A =
⊕

P∈SpecA
E(A/P )µ

0(P,A), µ0(P,A) := dimk(P )HomAP
(k(P ), AP ) = 1.

So for each P ∈ SpecA, E(A/P ) is a direct summand of A. Thus E(A/P ) is projective.
We show the opposite. By Theorem 3.20, A is Noetherian. Also for each P ∈ SpecA, AP is

injective by Lemma 1.14. So A is 0-dimensional Gorenstein. �

In summary, there is the following relationship between the several classes of rings.

Semi-perfect Finite sum of local rings

Perfect DCCP

Artinian Noetherian and Perfect

0-dimensional Gorenstein Prj = Inj

Proposition 3.22

Theorem 3.17

Corollary 3.24

Proposition 3.25
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